姓名 朱跃进
个人简历
出生年月:1986.11
任职年月:2021.07
职称:教授
党政职务:党支部书记
技术职务:
所在学科:工程热物理
导师:博导/硕导
最高学位:博士(2013),南京理工大学;英国伦敦大学学院 机械工程系 访问学者(2018.09-2019.09)
学术任职:1.国家自然基金委评审专家;2.中国力学学会 会员;3.江苏省工程热物理学会 会员;4、Combustion and Flame、Physics of Fluids、Acta Mechanica Sinica等学术期刊审稿人;5、火箭推进杂志青年编委;
研究领域
1. 航空发动机/先进动力推进系统;
2. 强化换热与热管理;
3. 等离子体技术;
4. 人工智能及在流体力学中的应用;
科研项目
1. 国家自然科学基金面上项目,2023-2026;
2. 国家自然科学基金面上项目,2019-2022;
3. 江苏大学青年骨干教师培育对象项目,2018-2020;
4. 国家自然科学基金青年项目,2015-2017;
5. 江苏省自然科学基金青年项目,2015-2017;
6. 企业委托,2024-2025;
7. 企业委托,2023;
主要论文
1. Liquid fuels in rotating detonation engines: Advances and challenges. Physics of Fluids, 2024, 36(12), 121305.
2. Flame acceleration and detonation initiation in a non-uniform hydrogen–air mixture with a combination of fluid and solid obstacles. Physics of Fluids, 2024, 36(12), 126122.
3. Effects of the jet obstacle on flame acceleration and deflagration-to-detonation transition: A numerical perspective. International Journal of Hydrogen Energy, 2024, 94: 1236–1246.
4. The propagation characteristics of a detonation wave in uniformly premixed gases within a semi-confined channel. Physics of Fluids, 2024, 36(11), 116107.
5. On the focusing effect and interfacial evolution of incident shock waves impinging on double-layer nested heavy gas bubbles. Physics of Fluids, 2024, 36(10), 106144.
6. Numerical study on flame acceleration and deflagration-to-detonation transition affected by the solid obstacles with different shapes. Applied Thermal Engineering, 2024, 257, 124296.
7. Implementation and verification of an OpenFOAM solver for gas-droplet two-phase detonation combustion. Physics of Fluids, 2024, 36(8), 086133.
8. Numerical study on flame acceleration and deflagration-to-detonation transition: Spatial distribution of solid obstacles. Physics of Fluids, 2024, 36(8), 086123.
9. Numerical study on rotating detonation combustion with the discrete distribution of partially pre-vaporized n-heptane sprays. Fuel, 2024, 356: 129650.
10. Numerical investigation of the effect of reactive gas jets on the flame acceleration and DDT process. International Journal of Hydrogen Energy, 2024, 51: 727–740.
11. On the interaction between a detonation wave and an inert gas plug: A numerical investigation. Physics of Fluids, 2023, 35(12), 126104.
12. Effects of the perturbation inlet on the evolution and oscillation characteristics of multiple rotating detonation waves. Aerospace Science and Technology, 2023, 141: 108586.
13. Effects of the swirler on the performance of an advanced vortex combustor. Applied Thermal Engineering, 2023, 230, 120752.
14. Effects of the quantity and arrangement of reactive jet obstacles on flame acceleration and transition to detonation: A numerical study. Aerospace Science and Technology, 2023, 137: 108269.
15. Numerical investigation of the effect of equivalence ratio on the propagation characteristics and performance of rotating detonation engine. International Journal of Hydrogen Energy, 2023, 48: 24074–24088.
16. Effect of fluidic obstacle on flame acceleration and DDT process in hydrogen-air mixture. International Journal of Hydrogen Energy, 2023, 48: 14896–14907.
17. Effect of hydrogen concentration distribution on flame acceleration and deflagration-to-detonation transition in staggered obstacle-laden channel. Physics of Fluids, 2023, 35, 016124.
18. Study on mechanisms of methane/ hydrogen blended combustion using reactive molecular dynamics simulation. International Journal of Hydrogen Energy, 2023, 48: 1625–1635.
19. Flame acceleration and onset of detonation in inhomogeneous mixture of hydrogen-air in an obstructed channel. Aerospace Science and Technology, 2022, 130: 107944.
20. Effect of solid obstacle distribution on flame acceleration and DDT in obstructed channels filled with hydrogen-air mixture. International Journal of Hydrogen Energy, 2022, 47: 12759–12770.
21. Computational study of planar shock wave interacting with elliptical heavy gas bubble. Acta Mechanica Sinica, 2021, 37(8): 1264–1277.
22. Numerical Investigation of Weak Planar Shock— Elliptical Light Gas Bubble Interaction in Shock and Reshock Accelerated Flow. Fluid Dynamics, 2021, 56(3): 393–402.
23. On the interaction between a diffraction shock wave and a cylindrical sulfur hexafluoride bubble. AIP Advances, 2021, 11, 045319.
24. Effect of reactive gas mixture distributions on the flame evolution in shock accelerated flow. Acta Astronautica, 2021, 179: 484–494.
25. Sulfur hexafluoride bubble evolution in shock accelerated flow with a transverse density gradient. Physics of Fluids, 2020, 32, 026101.
26. Characteristics study on a modified advanced vortex combustor. Energy, 2020, 193, 116805.
27. Three-dimensional shock-sulfur hexafluoride bubble interaction. AIP Advances, 2019, 9, 115306.
28. Flame evolution in shock-accelerated flow under different reactive gas mixture gradients. Physical Review E, 2019, 100, 013111.
29. Numerical investigation of planar shock wave impinging on spherical gas bubble with different densities. Physics of Fluids, 2019, 31, 056101.
30. Numerical study on stability and influencing factors of heterogeneous reaction for hydrogen/oxygen mixture in planar catalytic micro combustor. International Journal of Hydrogen Energy, 2019, 44, 29(7): 15587–15597.
31. Numerical investigation of shock-SF6 bubble interaction with different mach numbers. Computers and Fluids, 2018, 177: 78–86.
32. Jet formation of SF6 bubble induced by incident and reflected shock waves. Physics of Fluids, 2017, 29, 126105.
33. Stable detonation characteristics of premixed C2H4/O2 gas in narrow gaps. Exp. Fluids, 2017, 58: 112.
34. Flow topology of three-dimensional spherical flame in shock accelerated flows. Advances in Materials Science and Engineering, 2016, 3158091.
35. Three-dimensional numerical simulations of spherical flame evolutions in shock and reshock accelerated flows. Combustion Science and Technology, 2013, 185(10): 1415–1440.
36. Effect of chemical reactivity on the detonation initiation in shock accelerated flow in a confined space. Acta Mechanica Sinica, 2013, 29(1): 54–61.
37. Formation and evolution of vortex rings induced by interactions between shock waves and a low-density bubble. Shock Waves, 2012, 22(6): 495–509.
38. 扰动进口影响多重旋转爆轰波演化及振荡特性的数值研究. 推进技术, 2024, 45(11): 2307001.
39. 不同气氛影响甲烷燃烧特性的分子动力学模拟. 工程热物理学报, 2023, 44(5): 1413–1421.
40. 异戊醇热分解的分子动力学模拟. 江苏大学学报(自然科学版), 2023, 44(6): 719–724.
41. 爆轰波与惰性气块相互作用的一维数值研究. 空天技术, 2023(3): 60–70.
42. 激波冲击SF6重气泡引发射流的数值模拟. 爆炸与冲击, 2018, 38(1): 50–59.
43. 激波诱导火焰失稳与爆轰的条件研究. 爆炸与冲击, 2017, 37(4): 741–747.
44. 初始压力和狭缝宽度对毫米量级狭缝内爆轰起爆距离的影响. 爆炸与冲击, 2016, 36(4): 441–448.
45. 激波冲击火焰的涡量特性研究. 爆炸与冲击, 2015, 35(6): 839–845.
46. 激波冲击火焰的流动拓扑研究. 计算物理, 2015, 32(4): 403–409.
47. 激波诱导火焰变形、混合和燃烧的数值研究. 爆炸与冲击, 2013, 33(4): 430–437.
48. 入射和反射激波诱导重气泡变形和失稳的三维数值研究. 高压物理学报, 2012, 26(3): 266–272.
49. 受限空间内激波与火焰作用的三维计算. 推进技术, 2012, 33(3): 405–411.
50. 入射和反射激波诱导轻气泡变形和失稳的计算研究. 计算物理, 2011, 28(6): 810–816.
51. 变密度随机涡模型在湍流射流扩散火焰中的应用. 计算物理, 2011, 28(1): 27–34.
获奖情况
1. 2024年 江苏大学新长征突击手;
2. 2023年 江苏省科技副总项目;
3. 2023年 江苏大学 优秀共产党员;
4. 2021年 江苏大学 能动学院“三全育人”先进个人;
5. 2020-2021学年 江苏大学“优秀学业导师”;
6. 2020年 江苏大学 能动学院教职工考核校级“优秀”;
7. 2017年 江苏大学“青年英才培育计划”优秀青年骨干教师;
8. 2014年 江苏大学 能动学院教职工考核校级“优秀”;
9. 2012-2015年 江苏大学“优秀学业导师”;
授权专利
1. 一种新型变截面航空发动机燃烧室;
2. 一种强化换热阻火器;
3. BUFFERED WALL FLOW MULTI-CHANNELS FLAME ARRESTER (美国);
4. Buffer wall flow-type multi-passage flame arrester (英国);
5. 一种多通道阻火器及其工作方法;
6. 一种缓冲壁流式多孔道阻火器;
7. 一种可调声波吹灰器;
8. 一种温度压力可调的蒸汽吹灰系统;
9. 一种测量碳氢燃料层流火焰燃烧速度的本生灯实验装置;
其他
招收工程热物理、航空宇航动力、流体力学、空气动力学等相关专业的硕士、博士研究生、博士后,欢迎联系报考,联系方式:zyjwind@163.com。